To improve enhancement accuracy, we introduce a weight function *w* which depends only on the measuring device. Current sensors do not have suitable capability individually.

Challenging point

- Depend on the local geometries of measuring surfaces

Previous methods use the pixel-coordinates, which is not suitable to recover the smooth geometries of measured surfaces.

Related Work

Global Optimization Based Method

1. Measured depth data is used as optimization data prior.
2. Various pixel-based information is used as optimization smoothness prior. (image gradient, segmentation, edge saliency, non-local mean, and co-sparseness etc.)
3. Depth enhancement is achieved by an optimization of over the image grid.

Local Filter Based Method

1. Local measured depth data is summarized by using similarity weights.
2. Similarity weights are defined on the global image plane coordinates. (pixel-distance, color-difference, depth gradient, and color gradientic distance, etc.)
3. Depth enhancement is achieved by local calculations on the image grid.

Contributions

To improve enhancement accuracy, we introduce local tangent planes as local coordinates to handle the geometries.

3. Depth enhancement is achieved by an optimization of over the image grid.

1. Correction of orientations based on positional relationships
2. Connection of linearly connectable tangent planes on superspecials

Contributions

- Dependent on local tangent planes of the uncorrupted surfaces from a noisy low-resolution depth image
- Charts defined on each local tangent of measuring surfaces

Challenging point

- Estimation of the local tangent planes of the uncorrupted surfaces from a noisy low-resolution depth image

Global Optimization Based Method

1. Measured depth data is used as optimization data prior.
2. Various pixel-based information is used as optimization smoothness prior. (image gradient, segmentation, edge saliency, non-local mean, and co-sparseness etc.)
3. Depth enhancement is achieved by an optimization of over the image grid.

Local Filter Based Method

1. Local measured depth data is summarized by using similarity weights.
2. Similarity weights are defined on the global image plane coordinates. (pixel-distance, color-difference, depth gradient, and color gradientic distance, etc.)
3. Depth enhancement is achieved by local calculations on the image grid.

Contributions

To improve enhancement accuracy, we introduce local tangent planes as local coordinates to handle the geometries.

3. Depth enhancement is achieved by an optimization of over the image grid.

1. Correction of orientations based on positional relationships
2. Connection of linearly connectable tangent planes on superspecials

Contributions

- Dependent on local tangent planes of the uncorrupted surfaces from a noisy low-resolution depth image
- Charts defined on each local tangent of measuring surfaces

Challenging point

- Estimation of the local tangent planes of the uncorrupted surfaces from a noisy low-resolution depth image

Global Optimization Based Method

1. Measured depth data is used as optimization data prior.
2. Various pixel-based information is used as optimization smoothness prior. (image gradient, segmentation, edge saliency, non-local mean, and co-sparseness etc.)
3. Depth enhancement is achieved by an optimization of over the image grid.

Local Filter Based Method

1. Local measured depth data is summarized by using similarity weights.
2. Similarity weights are defined on the global image plane coordinates. (pixel-distance, color-difference, depth gradient, and color gradientic distance, etc.)
3. Depth enhancement is achieved by local calculations on the image grid.

Contributions

To improve enhancement accuracy, we introduce local tangent planes as local coordinates to handle the geometries.

3. Depth enhancement is achieved by an optimization of over the image grid.

1. Correction of orientations based on positional relationships
2. Connection of linearly connectable tangent planes on superspecials

Contributions

- Dependent on local tangent planes of the uncorrupted surfaces from a noisy low-resolution depth image
- Charts defined on each local tangent of measuring surfaces

Challenging point

- Estimation of the local tangent planes of the uncorrupted surfaces from a noisy low-resolution depth image

Global Optimization Based Method

1. Measured depth data is used as optimization data prior.
2. Various pixel-based information is used as optimization smoothness prior. (image gradient, segmentation, edge saliency, non-local mean, and co-sparseness etc.)
3. Depth enhancement is achieved by an optimization of over the image grid.

Local Filter Based Method

1. Local measured depth data is summarized by using similarity weights.
2. Similarity weights are defined on the global image plane coordinates. (pixel-distance, color-difference, depth gradient, and color gradientic distance, etc.)
3. Depth enhancement is achieved by local calculations on the image grid.

Contributions

To improve enhancement accuracy, we introduce local tangent planes as local coordinates to handle the geometries.

3. Depth enhancement is achieved by an optimization of over the image grid.

1. Correction of orientations based on positional relationships
2. Connection of linearly connectable tangent planes on superspecials

Contributions

- Dependent on local tangent planes of the uncorrupted surfaces from a noisy low-resolution depth image
- Charts defined on each local tangent of measuring surfaces

Challenging point

- Estimation of the local tangent planes of the uncorrupted surfaces from a noisy low-resolution depth image

Global Optimization Based Method

1. Measured depth data is used as optimization data prior.
2. Various pixel-based information is used as optimization smoothness prior. (image gradient, segmentation, edge saliency, non-local mean, and co-sparseness etc.)
3. Depth enhancement is achieved by an optimization of over the image grid.

Local Filter Based Method

1. Local measured depth data is summarized by using similarity weights.
2. Similarity weights are defined on the global image plane coordinates. (pixel-distance, color-difference, depth gradient, and color gradientic distance, etc.)
3. Depth enhancement is achieved by local calculations on the image grid.

Contributions

To improve enhancement accuracy, we introduce local tangent planes as local coordinates to handle the geometries.

3. Depth enhancement is achieved by an optimization of over the image grid.

1. Correction of orientations based on positional relationships
2. Connection of linearly connectable tangent planes on superspecials

Contributions

- Dependent on local tangent planes of the uncorrupted surfaces from a noisy low-resolution depth image
- Charts defined on each local tangent of measuring surfaces

Challenging point

- Estimation of the local tangent planes of the uncorrupted surfaces from a noisy low-resolution depth image

Global Optimization Based Method

1. Measured depth data is used as optimization data prior.
2. Various pixel-based information is used as optimization smoothness prior. (image gradient, segmentation, edge saliency, non-local mean, and co-sparseness etc.)
3. Depth enhancement is achieved by an optimization of over the image grid.

Local Filter Based Method

1. Local measured depth data is summarized by using similarity weights.
2. Similarity weights are defined on the global image plane coordinates. (pixel-distance, color-difference, depth gradient, and color gradientic distance, etc.)
3. Depth enhancement is achieved by local calculations on the image grid.

Contributions

To improve enhancement accuracy, we introduce local tangent planes as local coordinates to handle the geometries.

3. Depth enhancement is achieved by an optimization of over the image grid.

1. Correction of orientations based on positional relationships
2. Connection of linearly connectable tangent planes on superspecials

Contributions

- Dependent on local tangent planes of the uncorrupted surfaces from a noisy low-resolution depth image
- Charts defined on each local tangent of measuring surfaces

Challenging point

- Estimation of the local tangent planes of the uncorrupted surfaces from a noisy low-resolution depth image

Global Optimization Based Method

1. Measured depth data is used as optimization data prior.
2. Various pixel-based information is used as optimization smoothness prior. (image gradient, segmentation, edge saliency, non-local mean, and co-sparseness etc.)
3. Depth enhancement is achieved by an optimization of over the image grid.

Local Filter Based Method

1. Local measured depth data is summarized by using similarity weights.
2. Similarity weights are defined on the global image plane coordinates. (pixel-distance, color-difference, depth gradient, and color gradientic distance, etc.)
3. Depth enhancement is achieved by local calculations on the image grid.

Contributions

To improve enhancement accuracy, we introduce local tangent planes as local coordinates to handle the geometries.

3. Depth enhancement is achieved by an optimization of over the image grid.

1. Correction of orientations based on positional relationships
2. Connection of linearly connectable tangent planes on superspecials

Contributions

- Dependent on local tangent planes of the uncorrupted surfaces from a noisy low-resolution depth image
- Charts defined on each local tangent of measuring surfaces

Challenging point

- Estimation of the local tangent planes of the uncorrupted surfaces from a noisy low-resolution depth image

Global Optimization Based Method

1. Measured depth data is used as optimization data prior.
2. Various pixel-based information is used as optimization smoothness prior. (image gradient, segmentation, edge saliency, non-local mean, and co-sparseness etc.)
3. Depth enhancement is achieved by an optimization of over the image grid.

Local Filter Based Method

1. Local measured depth data is summarized by using similarity weights.
2. Similarity weights are defined on the global image plane coordinates. (pixel-distance, color-difference, depth gradient, and color gradientic distance, etc.)
3. Depth enhancement is achieved by local calculations on the image grid.

Contributions

To improve enhancement accuracy, we introduce local tangent planes as local coordinates to handle the geometries.

3. Depth enhancement is achieved by an optimization of over the image grid.

1. Correction of orientations based on positional relationships
2. Connection of linearly connectable tangent planes on superspecials

Contributions

- Dependent on local tangent planes of the uncorrupted surfaces from a noisy low-resolution depth image
- Charts defined on each local tangent of measuring surfaces

Challenging point

- Estimation of the local tangent planes of the uncorrupted surfaces from a noisy low-resolution depth image